A Short-Term Photovoltaic Power Prediction Model Based on an FOS-ELM Algorithm

نویسندگان

  • Jidong Wang
  • Yue Zhou
چکیده

With the increasing proportion of photovoltaic (PV) power in power systems, the problem of its fluctuation and intermittency has become more prominent. To reduce the negative influence of the use of PV power, we propose a short-term PV power prediction model based on the online sequential extreme learning machine with forgetting mechanism (FOS-ELM), which can constantly replace outdated data with new data. We use historical weather data and historical PV power data to predict the PV power in the next period of time. The simulation result shows that this model has the advantages of a short training time and high accuracy. This model can help the power dispatch department schedule generation plans as well as support spatial and temporal compensation and coordinated power control, which is important for the security and stability as well as the optimal operation of power systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Short-term Wind Power Prediction Using GA-ELM

Abstract: Focusing on short-term wind power forecast, a method based on the combination of Genetic Algorithm (GA) and Extreme Learning Machine (ELM) has been proposed. Firstly, the GA was used to prepossess the data and effectively extract the input of model in feature space. Basis on this, the ELM was used to establish the forecast model for short-term wind power. Then, the GA was used to opti...

متن کامل

Application of an Improved Neural Network Using Cuckoo Search Algorithm in Short-Term Electricity Price Forecasting under Competitive Power Markets

Accurate and effective electricity price forecasting is critical to market participants in order to make an appropriate risk management in competitive electricity markets. Market participants rely on price forecasts to decide on their bidding strategies, allocate assets and plan facility investments. However, due to its time variant behavior and non-linear and non-stationary nature, electricity...

متن کامل

Neuro-fuzzy short-term forecasting model for PV plants optimized with genetic algorithm

This paper presents a short-term forecasting model designed to forecast the hourly power production in a grid-connected photovoltaic plant. The model is based on neuro-fuzzy systems optimized with the use of a genetic algorithm. The model uses as inputs forecasted weather variables obtained with a meso-scale numerical weather prediction model. The model was applied to forecast the hourly produc...

متن کامل

A New Implementation of Maximum Power Point Tracking Based on Fuzzy Logic Algorithm for Solar Photovoltaic System

In this paper, we present a modeling and implementation of new control schemes for an isolated photovoltaic (PV) using a fuzzy logic controller (FLC). The PV system is connected to a load through a DC-DC boost converter. The FLC controller provides the appropriate duty cycle (D) to the DC-DC converter for the PV system to generate maximum power. Using FLC controller block in MATLABTM/Simulink e...

متن کامل

Short-term Power Prediction of the Photovoltaic System Based on QPSO-SVM

Short-term power prediction of the photovoltaic system is one of the effective means to reduce the adverse effects of photovoltaic power on the grid. Since the efficiency of the traditional support vector machine (SVM) prediction method is low, this paper proposes the SVM based on the parameter optimization method of quantum particle swarm optimization (QPSO), and then apply into the power shor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017